ISSN: 2582-7219

International Journal of Multidisciplinary
Research in Science, Engineering and Technology

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Impact Factor: 8.206 Volume 8, Issue 9, September 2025

© 2025 IJMRSET | Volume 8, Issue 9, September 2025| DOI:10.15680/IJMRSET.2025.0809036

INNUNHYELYEVPARE | www.ijmrset.com | Impact Factor: 8.206] ESTD Year: 2018|

-Eng,

- ‘4?\ - J - - - - -
58‘;. :’é» International Journal of Multidisciplinary Research in
P 3! L) o . . . S

:LW« Science, Engineering and Technology (IJMRSET)
IIMBSET (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

Sniff AI: Standalone Code Review &
Suggestions Platform

Guhanathan S', Lakshmi G B2, Prof. Savithri V?
PG Students, Dept. of DCS, Coimbatore Institute of Technology, Coimbatore, India'-?
Assistant Professor, Dept. of DCS, Coimbatore Institute of Technology, Coimbatore, India®

ABSTRACT: The rapid adoption of Al-assisted programming tools like GitHub Copilot and ChatGPT has accelerated
software development but also introduced risks such as logic flaws, hallucinated APIs, weak error handling, and
inadequate test coverage. Traditional static analysis tools fail to address these Al-specific challenges. To bridge this
gap, we propose Sniff AI (CodeSentinel), a self-contained web-based code review system tailored for auditing both
Al-generated and human-written code. Leveraging Al fingerprint detection, AST-based logic analysis, API validation,
and test coverage estimation, Sniff Al provides developers with severity-ranked recommendations. Experiments show
improved detection accuracy, transparency, and reliability in Al-augmented software development.

LINTRODUCTION

Software development is rapidly evolving with the growing adoption of Al-assisted coding tools such as GitHub
Copilot, Amazon CodeWhisperer, and ChatGPT. These platforms accelerate code generation, reduce time-to-
deployment, and improve productivity, but they also introduce unique risks. Unlike traditionally authored code, Al-
generated code often suffers from hallucinated API calls, inconsistent return paths, insufficient error handling, and poor
test coverage, which can lead to silent failures in production systems and compromise software reliability.

Conventional static analysis tools like SonarQube, DeepSource, and CodeClimate effectively detect style violations,
security flaws, and maintainability issues; however, they are primarily optimized for traditional codebases and fail to
capture Al-specific characteristics such as repetitive naming patterns, unused imports, or overly regular formatting.
Similarly, Al-powered generation platforms focus on usability and speed but lack post-generation validation
mechanisms, leaving a critical gap in ensuring code safety.

To address these challenges, this research introduces Sniff AI (CodeSentinel), a standalone, web-based automated
code review system designed to analyze both Al-generated and human-authored programs. The system integrates Al
fingerprint detection, AST-driven logic verification, API schema validation, and test coverage assessment into a unified
pipeline. Backed by a scalable backend and interactive dashboard, Sniff Al delivers modular, extensible, and
explainable analysis. Experimental results demonstrate its effectiveness in detecting high-risk patterns with low false
positives, thereby enhancing trust, transparency, and reliability in Al-augmented software development.

ILLLITERATURE REVIEW

The rapid adoption of Al-assisted programming tools such as GitHub Copilot, Amazon CodeWhisperer, and ChatGPT
has transformed software development workflows. These platforms accelerate code generation, improve productivity,
and reduce time-to-deployment. However, they also introduce new challenges, including hallucinated API calls,
inconsistent return paths, insufficient error handling, and incomplete test coverage. Early research on Al-generated text
detection laid the groundwork for detecting Al-authored code by leveraging stylistic and heuristic features such as
repetitive naming, unused imports, and absent documentation [1]. While these techniques demonstrate the feasibility of
Al code fingerprinting, most prior studies focus on natural language rather than structured programming contexts,
limiting their applicability to software development environments.

Traditional static code analysis has been widely studied to improve software reliability. Tools such as SonarQube and
DeepSource, alongside AST (Abstract Syntax Tree) and CFG (Control Flow Graph) traversal methods, have been used

IJMRSET © 2025 | AnISO 9001:2008 Certified Journal | 13565

© 2025 IJMRSET | Volume 8, Issue 9, September 2025| DOI:10.15680/IJMRSET.2025.0809036

INNUNHYELYEVPARE | www.ijmrset.com | Impact Factor: 8.206] ESTD Year: 2018|

- EW

P 'f/&f - y - - - * -
‘48';;3:’} International Journal of Multidisciplinary Research in
S [T CIE)) _
s () Science, Engineering and Technology (IJMRSET)
IIMBSET (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

L ___|
to detect unreachable code, incomplete return paths, and unhandled exceptions [2]. These methods are effective for
human-authored programs but are insufficient for addressing Al-specific anomalies like hallucinated logic or overly
uniform stylistic patterns, which frequently appear in Al-generated code.

Schema-based API validation has been explored to detect deprecated or misused APIs in mobile and web applications.
By verifying API calls against OpenAPI specifications, researchers have demonstrated improved detection of invalid or
hallucinated calls [3]. Nonetheless, these approaches rely on complete documentation and consistent API behavior,
which are often unavailable in Al-generated code that includes custom or fabricated APIs.Test coverage research
highlights the importance of branch, path, and mutation analysis to identify untested code paths [4]. Dynamic tools
such as pytest-cov and JaCoCo provide runtime insights, while static estimations help developers identify gaps early.
However, existing coverage methods rarely extend to Al-generated code, where incomplete testing and untested logic
flows are common.

Relevance to Current Research

Early work on Al-generated text and code detection highlights the presence of identifiable stylistic and heuristic
patterns unique to Al-authored content, such as repetitive naming conventions, unused imports, and missing
documentation [1]. These studies underscore that conventional code review and analysis tools are insufficient for
detecting such Al-specific fingerprints. Building on this insight, Sniff Al incorporates a dedicated Al fingerprinting
module capable of analyzing both syntactic and stylistic cues to systematically differentiate Al-generated code from
human-authored code. This layer ensures that Al-specific risks, which often go unnoticed in traditional static analysis
workflows, are proactively identified and flagged for developer review.

Relevance to Current Research

Research in static code analysis and program verification demonstrates the effectiveness of Abstract Syntax Tree (AST)
traversal and Control Flow Graph (CFG) analysis in detecting unreachable code, incomplete return paths, and
unhandled exceptions [2]. While these methods are highly effective for conventional programming, they do not account
for the anomalies introduced by Al-generated code, such as hallucinated control flows or overly uniform logic
structures. Sniff Al extends these principles by integrating AST-driven logic verification specifically tuned to identify
inconsistencies and subtle errors characteristic of Al outputs, thereby bridging the gap between traditional verification
techniques and Al-aware analysis.

Relevance to Current Research

Studies on API misuse detection highlight the critical role of schema-based validation, where API calls are verified
against official specifications to identify deprecated, unsupported, or hallucinated calls [3]. However, prior approaches
assume complete and reliable API documentation, limiting their effectiveness for Al-generated code that may include
fabricated or poorly documented API calls. Sniff Al addresses this limitation by combining schema validation with
heuristic detection, enabling the platform to identify both documented API misuses and anomalous Al-induced calls,
thereby improving the overall robustness and correctness of the code review process.

Relevance to Current Research

Test coverage research emphasizes the importance of identifying untested logic paths to ensure software reliability,
using techniques such as branch coverage, path coverage, and mutation testing [4]. While dynamic analysis tools
provide runtime insights, static estimations are critical for early detection of coverage gaps. Al-generated code often
exhibits incomplete or inconsistent testing, which can propagate errors into production. Sniff Al incorporates a test
coverage estimation module that evaluates both human-written and Al-generated code, highlighting untested paths and
suggesting improvements, thus mitigating potential reliability risks associated with Al-assisted development.

Relevance to Current Research

By unifying Al fingerprint detection, AST-driven logic verification, schema-based API validation, and test coverage
estimation into a modular, web-based platform, Sniff AI addresses the fragmentation of prior research and offers a
comprehensive, explainable framework for auditing Al-augmented code. This integrated approach not only enhances
detection accuracy and code reliability but also provides developers with actionable insights in a user-friendly interface.
By bridging the gap between individual research domains and creating a holistic, Al-aware auditing system, Sniff Al
represents a significant advancement in ensuring safe, trustworthy, and maintainable Al-assisted software development.

IJMRSET © 2025 | AnISO 9001:2008 Certified Journal | 13566

© 2025 IJMRSET | Volume 8, Issue 9, September 2025| DOI:10.15680/IJMRSET.2025.0809036

INNUNHYELYEVPARE | www.ijmrset.com | Impact Factor: 8.206] ESTD Year: 2018|

- EW

P 'f/&f - y - - - * -
‘48';;3:’} International Journal of Multidisciplinary Research in
S [T CIE)) _
s () Science, Engineering and Technology (IJMRSET)
IIMBSET (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

I ———
HNLMETHODOLOGY OF PROPOSED SURVEY

The methodology underlying Sniff AI (CodeSentinel) is designed to address the unique risks introduced by Al-
generated code while complementing traditional static analysis approaches. The system integrates heuristics, program
analysis, API validation, and test coverage estimation into a modular, multi-layered pipeline, allowing it to evolve
toward broader language support and deeper analysis without affecting existing functionality. The methodology ensures
that code quality assessment is accurate, explainable, and actionable, and is structured into several key components:
system architecture, code ingestion and preprocessing, Al fingerprint analysis, logic verification, API validation, test
coverage assessment, and recommendation generation.

Sniff Al adopts a three-tier architecture comprising a presentation layer, an application layer, and a data layer to
ensure modularity, maintainability, and scalability. The presentation layer is built using React 18 and styled with
TailwindCSS, offering an interactive dashboard for code uploads, results visualization, and rule customization.
Features include syntax-highlighted code views, categorized issue panels for Al fingerprints, logic, API, and test
coverage, as well as severity-based filtering. The interface adheres to WCAG 2.1 AA accessibility standards,
providing actionable insights without overwhelming developers. The application layer, implemented using Python
FastAPI, orchestrates the complete analysis workflow. Each analysis module—ALI fingerprint detection, logic analysis,
API checker, and test coverage analyzer—operates as an independent service coordinated via REST APIs. FastAPI’s
asynchronous handling ensures efficient processing of large codebases, and security mechanisms, including token-
based authentication, sandboxed execution, and rate limiting, safeguard against misuse. The data layer employs SQLite
to store scan history, user preferences, and configuration rules, with optional encrypted storage for historical results and
seamless migration to enterprise-scale databases like PostgreSQL or MongoDB.

Uploaded code enters the system through the ingestion and preprocessing module, which standardizes and structures
the code to prevent errors during analysis. Normalization ensures consistent indentation, line endings, and whitespace,
while tokenization breaks the code into language-specific elements such as keywords, identifiers, and operators.
Abstract Syntax Trees (ASTs) are generated for downstream logic and coverage analysis, and multi-file repositories are
processed with dependency resolution to construct internal call graphs.

The AI Fingerprint Analyzer leverages heuristic and stylistic markers to estimate the likelihood of Al authorship,
including repetitive or generic names, lack of docstrings, unused imports, and uniform formatting. Each feature
contributes to an Al-likelihood score, with scores above a configurable threshold classifying the code as likely Al-
generated. Transparency is ensured through highlighted evidence, and future versions support machine learning
classifiers trained on large datasets of AI- and human-authored code.

The Logic Analyzer evaluates structural correctness and flow integrity, detecting missing returns, unused variables,
empty exception handlers, and unreachable code through AST traversal and shallow Control Flow Graph (CFG)
analysis. Severity levels are assigned based on potential runtime impact. The API Validation module mitigates the risk
of hallucinated or deprecated API calls by validating functions against OpenAPI schemas and SDK documentation,
supporting custom internal schemas, flagging hallucinations, and highlighting deprecated APIs with suggested
replacements.

The Test Coverage Analyzer addresses incomplete testing in Al-generated code through static and optional dynamic
assessments. It identifies untested fun ctions, classes, and branches, integrates runtime coverage reports from tools like
pytest-cov, and generates skeleton or parameterized tests for untested paths. Finally, the Recommendation Engine
aggregates findings from all modules into actionable reports, classifying issues by severity, highlighting the top three
blockers per file, providing code snippets for fixes, and exporting results in JSON format for integration with external
dashboards or quality tracking systems.

By combining these modules into a single, explainable, and Al-aware platform, Sniff Al provides a comprehensive

code review solution that ensures reliability, mitigates risks introduced by Al-assisted code generation, and facilitates
safe adoption of Al tools in software development workflows.

IJMRSET © 2025 | AnISO 9001:2008 Certified Journal | 13567

© 2025 IJMRSET | Volume 8, Issue 9, September 2025| DOI:10.15680/IJMRSET.2025.0809036

INNUNHYELYEVPARE | www.ijmrset.com | Impact Factor: 8.206] ESTD Year: 2018|

-Eng,

» 2 ‘&f - J - - - - -
‘48';. ::fa International Journal of Multidisciplinary Research in
P 3! L) L. . . I

:LW« Science, Engineering and Technology (IJMRSET)
IIMBSET (A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

I ———
IV.RESULTS AND DISCUSSION

The development and evaluation of Sniff AI (CodeSentinel) followed a structured experimental approach to validate
the system’s ability to detect Al-specific risks, maintain robustness across varying workloads, and provide actionable
insights to developers. The platform was implemented using a microservices-inspired architecture, integrating a
FastAPI backend with a React-based frontend. The backend hosted modular services for Al fingerprint analysis,
logic verification, API validation, and test coverage assessment, utilizing Python AST parsing libraries and supporting
JavaScript/TypeScript through esprima. Asynchronous request handling minimized latency for multi-file repository
scans, and OpenAPI-compliant REST endpoints enabled integration testing. The frontend offered a multi-page
dashboard with syntax-highlighted code rendering, interactive severity filters, and cross-device responsive layouts,
ensuring accessibility. A lightweight SQLite database stored scan configurations, user preferences, and optional
historical data, with encryption support for privacy, while Dockerized deployment ensured portability across
development and evaluation environments.

Evaluation datasets included 1,500 Al-generated Python and JavaScript snippets from GitHub Copilot and
ChatGPT-4 prompts, 1,000 human-authored Python repositories from trending GitHub projects, and 300 curated
API misuse cases containing hallucinated or deprecated calls. Test coverage evaluation incorporated 50 repositories
with existing unit tests and additional repositories lacking tests, enabling static and hybrid assessments. Validation
employed unit, integration, performance, and usability testing with 35 developers (25 students and 10 professionals) to
evaluate accuracy, latency, and dashboard usability. Metrics included Al detection precision, recall, F1-score, false
positive rate, processing latency across small, medium, and large codebases, and user satisfaction ratings on a 1-5
Likert scale.

Experimental results indicated that AI fingerprint detection achieved 91.2% accuracy with 89.7% precision and
92.5% recall, effectively distinguishing Al-generated code while maintaining low false positives. The logic analyzer
detected inconsistent return paths and unreachable code with 87.4% accuracy, performing best for procedural code but
showing minor limitations on advanced functional constructs. API validation demonstrated high precision (93.5%) and
recall (90.1%) for detecting hallucinated or deprecated calls, with optimal results on well-documented frameworks
(Flask, OpenAl, AWS SDKs). The test coverage analyzer achieved 84.3% static detection accuracy, which increased
to 94.8% when combined with dynamic coverage reports, confirming the value of hybrid evaluation.

Latency and scalability tests revealed average processing times of 1.7 seconds for small projects (<500 LOC), 6.5
seconds for medium projects (<5,000 LOC), and 48.3 seconds for large projects (=50,000 LOC), with incremental
report streaming improving perceived responsiveness. Load testing with 500 concurrent users demonstrated stable
performance, with the 95th percentile response time at 2.9 seconds. User acceptance tests rated dashboard usability at
4.6/5, clarity of issue reporting at 4.4/5, and trust in Al fingerprint detection at 4.2/5, with overall satisfaction averaging
4.5/5. Developers particularly appreciated the “Top 3 Blockers” view, which highlighted the most critical issues per
file.

Comparative analysis against traditional static analysis tools such as SonarQube and DeepSource showed significant
improvements in Al-specific risk detection. As shown in Table 1, Sniff Al outperforms existing tools across multiple
metrics, including Al fingerprint detection, API hallucination detection, logic flow analysis, test coverage estimation,
latency, and user satisfaction. For example, traditional tools lacked Al fingerprint detection entirely, while Sniff Al
achieved 91.2% accuracy. API hallucination detection coverage improved by over 70%, logic flow analysis by 9.1%,
and test coverage estimation by 22.8%. Latency for medium projects (<5K LOC) was reduced by 47.6%, and user
satisfaction increased by 18.4%.

A case study further illustrated Sniff AI’s unique capability to identify Al-specific risks. For instance, an Al-generated
Python snippet calling a non-existent function (openai.chat request()) passed undetected by traditional tools, whereas
Sniff Al flagged the error and suggested the corrected usage (openai.ChatCompletion.create()), demonstrating practical
utility in real-world development scenarios.

In summary, Sniff AI provides highly accurate detection of Al-generated fingerprints, hallucinated APIs, and
untested logic paths while maintaining low latency and high usability. By integrating multi-layered analysis, the

IJMRSET © 2025 | AnISO 9001:2008 Certified Journal | 13568

© 2025 IJMRSET | Volume 8, Issue 9, September 2025| DOI:10.15680/IJMRSET.2025.0809036

INNUNHYELYEVPARE | www.ijmrset.com | Impact Factor: 8.206] ESTD Year: 2018|

International Journal of Multidisciplinary Research in
Science, Engineering and Technology (IJMRSET)

(A Monthly, Peer Reviewed, Refereed, Scholarly Indexed, Open Access Journal)

platform bridges gaps in existing static analysis tools, offering a holistic, explainable, and developer-friendly solution
for mitigating Al-specific risks in modern software development workflows.

Table 1. Comparative performance of Sniff Al vs. traditional code review tools

Metric Traditional Tools Sniff AI Improvement
Al Fingerprint Detection Not Available 91.2% +91.2%

API Hallucination Detection Limited 93.5% +>70% coverage
Logic Flow Analysis 78.3% 87.4% +9.1%

Test Coverage Estimation 72.0% (static only) 94.8% (hybrid) +22.8%

Avg. Latency (<5K LOC) 12.4 sec 6.5 sec -47.6%

User Satisfaction (UAT) 3.8/5 4.5/5 +18.4%

V.CONCLUSION AND FUTURE WORK

In this paper, we have proposed Sniff AI (CodeSentinel), a standalone Al-assisted code review system designed to
detect Al-generated code risks. The system integrates Al fingerprint detection, logic verification, API validation, and
test coverage analysis to ensure code quality. Experimental results demonstrate that Sniff Al accurately identifies Al-
generated patterns, flags hallucinated or deprecated APIs, improves test coverage assessment, and maintains low
latency with high developer satisfaction. The proposed approach operates independently without IDE or CI/CD
dependencies, making it suitable for individuals and enterprises. Future work includes expanding language support,
integrating ML-based detection, and enabling automated fixes and collaborative dashboards.

REFERENCES

[1] GitHub Copilot — GitHub, “Your AI pair programmer,” [Online]. Available: https:/github.com/features/copilot
[2] DeepSource — “Automated code review with static analysis,” [Online]. Available: https://deepsource.io/
[3] SonarQube — SonarSource, “Continuous Code Quality,”

[4] Python Software Foundation, “PEP 8 — Style Guide for Python Code,” [Online]. Available: https://peps.python.org/pep-
0008/

[5] Python Documentation, “ast — Abstract Syntax Trees,” [Online]. Available: https://docs.python.org/3/library/ast.html
[6] OpenAPI Initiative, “OpenAPI Specification,” [Online]. Available: https://swagger.io/specification/

[7] IBM Research, “Beyond Black Box Al-Generated Plagiarism Detection: From Sentence to Document Level,” 2023.
[8] K. Pathak and S. Shaikh, “Loan Approval Prediction Using Machine Learning,” Int. Research Journal of Engineering and
Technology (IRJET), vol. 8, no. 9, 2021.

[9] A. Shinde et al., “Loan Prediction System Using Machine Learning,” ITM Web of Conferences, vol. 44, p. 03019, 2022.
[10] C. Yang, “Research on Loan Approval and Credit Risk Based on the Comparison of Machine Learning Models,” SHS
Web of Conferences, vol. 181, p. 02003, 2024.

[11] R. Achary and C. J. Shelke, “Fraud Detection in Banking Transactions Using Machine Learning,” Proc. Int. Conf. Intell.
Innov. Technol. Comput. Electr. Electron. (IITCEE), Bangalore, India, Jan. 2023.

[12] R. Udayakumar, P. B. K. Chowdary, T. Devi, and R. Sugumar, “Integrated SVM-FFNN for Fraud Detection in Banking
Financial Transactions,” Journal of Internet Services and Information Security, vol. 13, no. 4, pp. 12-25, Nov. 2023.
[13] P. Chatterjee and A. Das, “Adaptive Financial Recommendation Systems Using Generative Al and Multimodal Data,”
Journal of Knowledge Learning and Science Technology, vol. 4, no. 1, pp. 112-120, Jan. 2025.
[14] Faisal, N. A., Nahar, J., Sultana, N., & Mintoo, A. A., “Fraud Detection in Banking Leveraging Al to Identify and
Prevent Fraudulent Activities in Real-Time,” Journal of Machine Learning, Data Engineering and Data Science, vol. 1, no. 1,
pp. 181-197, Nov. 2024.

IJMRSET © 2025 | AnISO 9001:2008 Certified Journal | 13569

https://github.com/features/copilot
https://deepsource.io/
https://peps.python.org/pep-0008/
https://peps.python.org/pep-0008/
https://docs.python.org/3/library/ast.html
https://swagger.io/specification/

- =, &8
L g3

P

3 INTERNATIONAL
A ‘ ‘ STANDARD
SJIF Scleatific Journal lmpact Factor ‘ \ SERLAL
NUMBER
INDIA

INTERNATIONAL JOURNAL OF

MULTIDISCIPLINARY RESEARCH
IN SCIENCE, ENGINEERING AND TECHNOLOGY

NISCAIR

| Mobile No: +91-6381907438 | Whatsapp: +91-6381907438 | ijmrset@gmail.com |

www.ijmrset.com

mailto:ijmrset@gmail.com
http://www.ijmrset.com/

